

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Search for X(5568) \rightarrow B_s⁰ π [±] in CDF data

Patrick Lukens

Joint Experimental - Theoretical Seminar
23 February 2018

Exotic hadrons

- A large body of evidence exists to support exotic hadrons
 - Mesons that aren't $q\overline{q}$, baryons that aren't qqq.
- Most observations are to final states containing $c\overline{c}$ or $b\overline{b}$
 - − X(3872) → $J/\psi \pi^+\pi^-$, X(3915) → $J/\psi \omega$, Y(4260) → $J/\psi \pi^+\pi^-$
 - Z⁺ (4430) \rightarrow ψ(2S) π ⁺
 - $P_c^+(4380)$ → J/ψ p^+
- Large data sets at Belle, BES, LHCb are yielding these
- Understanding is lacking
- Nice recent review in Rev. Mod. Physics 90 (2018)

D0 – Observation of structure in $B_s\pi$ final state

- D0 observes $X(5568) \rightarrow B_s^0 \pi^{\pm}, B_s^0 \rightarrow J/\psi \phi$
 - Final state with four flavors (b,s,u,d)
 - Signal with a mass of $5567.8 \pm 2.9^{+0.9}_{-1.9}$ MeV/c²
 - $-\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV/c}^2$
- Suggests a tetraquark object

D0 – Confirmation of structure in semileptonic final state

- Recent confirmation of the X(5568) by D0 in $B_s^0 \to \mu^{\pm} D_s^{\mp} X$ - $D_s^{\pm} \to \phi \pi^{\pm}$, $M(B_s^0 \pi^{\pm}) = M(\mu^{\pm} D_s^{\mp} \pi^{\pm}) - M(\mu^{\pm} D_s^{\mp}) + M(B_s^0)$
- Updated mass and width values

CDF search for the X(5568)

- This work is a report on the CDF search for the X(5568)
 - Posted in arXiv:1712.09620
- Our job is to measure the fraction of B_s⁰ produced through X(5568) decay

$$f_{B_s^0/X(5568)} = \frac{\sigma(p\overline{p} \to X(5568) + x) * B(X(5568) \to B_s^0 \pi^{\pm})}{\sigma(p\overline{p} \to B_s^0 + x)} = \frac{N_{X(5568)}}{\alpha_{X(5568),B_s^0}} * \frac{1}{N_{B_s^0}}$$

- $-N_{X,B}$ number of X(5568), B_s^0
- α is the X(5568) acceptance and reconstruction efficiency, having reconstructed the $B_{s}^{\;0}$
- This work uses $B_s^0 \rightarrow J/\psi \phi$
- Data exists to also study B_s⁰ → D_s[±]π[∓]
 - Effort will probably prevent this

The CDF II Detector

 The data used in this analysis was collected with the CDF II Detector.

> This analysis uses data from 9.6 fb⁻¹. Full data set.

The trigger requires

Tracks in muon chambers

Tracks in the central tracking chamber (COT)

• $p_T > 1.5 \text{ GeV}$

 $-2.7 < M(\mu^{+}\mu^{-}) < 4.0 \text{ GeV/c}^{2}$

 Unbiased with respect to decay time for b-hadrons

Collecting b Hadrons with a J/ψ Final State

- This trigger matches central tracker and muon chamber tracks.
- A successful match will trigger acceptance of the event.

The CDF II Detector

- Events that satisfy the trigger are fully analyzed.
- Track reconstruction identifies all tracks with p_T>0.4 GeV/c
- Three SVX II measurements are required for all tracks in this analysis.

Reconstruction strategy

- Approach taken is deliberately conservative
- CDF has several successful particle searches in its history
 - B Baryons, B_c⁺
- The strategy is to stick with the approach used previously
 - No new selection techniques
- The recipe:
 - Obtain a J/ψ sample
 - - Form a constrained fit and require decay time inconsistent with prompt production
 - Combine with a π candidate

J/ψ selection

- The analysis is based data collected from 9.6 fb⁻¹ of collisions.
 - Full data set from 2001-11
- J/ψ sample requires
 - Muon chamber/COT track match
 - $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
 - 3 or more silicon hits/track
 - Dimuon mass within 80
 MeV/c² of PDG

B_s⁰ and X(5568) reconstruction

- ♦→K⁺K⁻ candidates:
 - Opposite charge pairs
 - 3 or more silicon hits/track
 - Mass within 2.5 Γ of the ϕ
 - (10 MeV/c²)
 - $p_T > 2.0 \text{ GeV/c}$
- π candidates:
 - 3 or more silicon hits
 - $p_T > 400 \text{ MeV/c}$
 - |impact| < 100 μ m
 - Respect to the beamline

B_s⁰ and X(5568) reconstruction

- $B_s^0 \rightarrow J/\psi \phi$ candidates:
 - Require 4-track constrained fit
 - Muons constrained to J/ψ mass
 - J/ ψ ϕ mass within 20 MeV/c² of the B_s⁰
 - $p_T > 10.0 \text{ GeV/c}$
 - Decay time ct > 100 μ m
- X(5568) candidates:
 - Require 5-track, 2-vertex constrained fit
 - To remove B_s^0 resolution, plot $M(B_s^0 \pi^{\pm}) = M(J/\psi \phi \pi^{\pm}) M(J/\psi \phi) + M(B_s^0)$

B_s⁰ reconstruction

- J/ψ φ candidates considered B_s⁰ highlighted in gray
 - -3552 ± 65 candidates
 - Sidebands for demonstration, ±100 MeV/c² from B_s⁰
- Acceptance limits sample to $|\eta| < 1.0$.

X(5568) signal at CDF

- The X(5568) has been simulated through CDF
 - Full analysis applied to the simulated events
- Reconstructed signal is asymmetric around the central value
 - Low momentum cutoff of tracking cuts into acceptance
 - Signal shape will have some dependence on p_T(B_s⁰)

 Reconstructed simulated X(5568), three ranges of p_T(B_s⁰)

X(5568) signal at CDF

- The X(5568) signal shape integrated in p_T(B_s⁰) is obtained by a weighted average of the simulation
 - Weight by the observed $p_T(B_s^{\ 0})$
- Expected signal then modeled with a Crystal Ball function

 Normalized signal shape expected for p_T(B_s⁰) > 10 GeV/c

X(5568) acceptance and efficiency

- The X(5568) acceptance and reconstruction efficiency integrated in p_T(B_s⁰) is obtained with the simulation
 - Weight by the acceptance corrected p_T(B_s⁰)
- Obtain the relative acceptance
 - Acceptance for X(5568)
 given that the is B_s⁰
 reconstructed
- Calculation repeated for the reported $\pm \sigma$ on $\Gamma_{X(5568)}$.

The relative X(5568)
 acceptance and
 reconstruction efficiency is
 0.445 ± 0.027 ± 0.018 for
 p_T(B_s⁰) > 10 GeV/c

Modeling the background to $X(5568) \rightarrow B_s^0 \pi^{\pm}$

- Sources of background
 - Prompt particles produced in association with the B_s⁰
 - Fake B_s⁰
 - Tracks from other B hadron small effect for such low mass
- We model this with the data
- Examine $M(B_s^0 \pi^{\pm})$ distribution away from the X(5568)
 - Omit range of $\pm \Gamma_{X(5568)}$ around 5568 MeV/c².
 - Assume D0 measurement of X(5568)
 - B_s^0 fraction from $X(5568) = 8.6 \pm 2.4\%$
 - Model the distribution with a polynomial and X(5568) signal

Background model

- $M(B_s^0 \pi^{\pm})$ with omitted entries around the X(5568)
- Dashed contours are full fit to the data
- Solid contours are background-only components

Background model

- $M(B_s^0 \pi^{\pm})$ with omitted entries around the X(5568)
 - Nominal signal component
- Pink contours indicate statistical uncertainty on the model

Fit to full $M(B_s^0 \pi^{\pm})$ distribution

- Fit with floating signal amplitude (red), null (green dashed)
 - B_s^0 fraction from X(5568) = 2.3 ±1.9%
- Distribution from sidebands shown for comparison

Systematic uncertainties on production fraction

Issue	Relative change in yield	
Width of X(5568)	17%	
Amplitude	31%	
Mass	17%	
B _s ⁰ yield	1.8%	
Acceptance and Efficiency	6.1%	
Total	39%	

- Affect of assumptions on value of the production fraction
- Total is the quadrature sum
- Final result for fraction of B_s^0 fraction from X(5568) decay 2.3 \pm 1.9(stat.) \pm 0.9(syst.)%

Simulating background fluctuation

- The result for the production fraction is consistent with 0.
- An upper limit at 95% confidence is estimated with a frequentist Neyman construction
 - $-2\delta log \mathcal{L}$ as the test statistic
- Simulations of our background model provide an estimate for frequency of fluctuation to an observable signal
- We find that the production fraction is less than 5.5% in 95% of occurrences.

Systematic uncertainties on the upper limit

- For the limit 11%:
 - Calculation of production fraction 6.6%
 - Acceptance and efficiency 6.1 %
 - B_s⁰ yield 1.8%
 - $B_s^0 \pi^{\pm}$ sample size 1.4%
 - D0 signal amplitude impact on background model 9%
 - Found by repeating the simulation after modifying the background model by 1 σ in the D0 rate.
- Choose to interpret this as a σ , and increase the upper limit by 2σ , for 95% limit
 - $-5.5\% \rightarrow 6.7\%$

The shadow analysis

- What if we look elsewhere?
- Exact same track fits where we substitute one K^{\pm} for a π^{\pm} .
 - − Select $K^{*0} \rightarrow K^{+}\pi^{-}$
 - − Then B⁰ \rightarrow J/ ψ K^{*0}
- Now look for $B^0 \pi^{\pm}$ final states
 - Define $M(B_s^0 \pi^{\pm})$ as before

Parallel approach

- Only the K^{0*} mass window differs from the B_s⁰ selection.
 - Find 16560 \pm 165 B⁰ candidates

$B^0 \pi^{\pm}$ as a proxy for $B_s^0 \pi^{\pm}$

- Combine B^0 with π^{\pm} to form a model for the $B_s^{\ 0} \pi^{\pm}$ distribution
 - Define $M_{B0}(B_s^0 \pi^{\pm}) = M(J/\psi K^{*0} \pi^{\pm}) M(J/\psi K^{*0}) + M(B_s^0)$
- Evidence for excited B states, expected
- No features where none are expected

$B^0 \pi^{\pm}$ as a proxy for $B_s^0 \pi^{\pm}$

- Background models from the $B^0 \pi^{\pm}$ distributions
- Omit range of excited B states
- Pink indicates statistical uncertainty

$B^0 \pi^{\pm}$ backgrounds applied to the $B_s^0 \pi^{\pm}$

- Background models from the B⁰ π[±] distributions
- Signal fit for B_s⁰ production fraction from X(5568) finds
 - $-0.9 \pm 1.9\%$ for B⁰ π ⁺ model
 - $-1.7 \pm 1.9\%$ for B⁰ π model
- 95% upper limits with each model are comparable to one based on $B_s^{\ 0} \, \pi^\pm$

Selecting on ΔR , $B^0\pi^+$ control sample

- A selection tool used by D0 is to limit $\Delta R = (\Delta \phi^2 + \Delta \eta^2)^{1/2}$
 - $-\Delta \phi$ and $\Delta \eta$ are between B_s^0 and π^\pm
 - $-\Delta R$ is the opening between B_s^0 and π^\pm
- Not used at CDF, highly correlated with mass

Selecting on ΔR , $B^0\pi^+$ control sample

- A selection tool used by D0 is to limit $\Delta R = (\Delta \phi^2 + \Delta \eta^2)^{1/2}$
 - $-\Delta \phi$ and $\Delta \eta$ are between B_s^0 and π^\pm
 - $-\Delta R$ is the opening between B_s^0 and π^{\pm}
- Not used at CDF, highly correlated with mass

Selecting on ΔR , $B^0\pi^+$ system

- A ΔR requirement sculpts the mass distribution, removing higher mass candidates
 - In $B^0\pi^+$ system, background under excited B states is reduced
- The interplay between the ΔR and $p_T(\pi^{\pm})$ requirements defines the background maximum.
 - Simple kinematics plus underlying momentum distribution

Selecting on ΔR , $B_s^0 \pi^{\pm}$ system

- Same kinematics at work in the $B_s^0\pi^{\pm}$ system
 - $-\Delta R$ requirement sculpts the high side
 - $-p_T(\pi^{\pm})$ requirement sculpts low side.
- Too much correlation, too much impact on the background shape at $M(B_s^0\pi^{\pm}) = 5568 \text{ MeV/c}^2$
- Not used in this analysis

Current Status

Analysis	f _{Bs/X(5568)}	Ref.
D0 (J/ψ φ)	8.6 ± 1.9 ± 1.4%	PRL 117,022003(2016)
D0 (μ D _s)	7.3+2.8 -2.4 +0.6 -1.7%	arXiv:1712.10176
LHCb	$< 2.4\% (p_T(B_s^0) > 10 \text{ GeV})$	PRL 117,152003 (2016)
CMS	$< 1.1\% (p_T(B_s^0) > 10 \text{ GeV})$	arXiv:1712.07588
ATLAS	$< 1.5\% (p_T(B_s^0) > 10 \text{ GeV})$	arXiv:1802.01840
CDF	< 6.7% (2.3 ± 1.9 ± 0.9%)	arXiv:1712.09620

- Status of the X(5568) searches
 - D0 first observation
 - Confirming observation in a second final state
- No confirmations from other experiments, limits set
- Our central value is about 2σ in tension with D0

Summary

- CDF has looked for the reported process $X(5568) \rightarrow B_s^0 \pi^{\pm}$
 - $B_s^{~0} \rightarrow J/\psi \phi$, $J/\psi \rightarrow \mu^+ \mu^-$, $\phi \rightarrow K^+ K^-$
- Approach chosen is simple, select on track p_T, impact, decay time, mass of combinations
 - No opening angles or other new techniques
- The background under the target was modeled with the data
 - Smooth extrapolation through the search area
 - Model assumes the reported X(5568), varied by its uncertainties
- The yield of the X(5568) found is not significant from 0
 - About 2σ tension with D0 report
 - Upper limit of 6.7% estimated (95% C.L.)

